
Comparative Analysis of Feed Forward Algorithms Against Backpropagation

Team members: Jesse Inouye, Shashvat Shah, Flavjo Xhelollari
1New York University Tandon School Of Engineering

{jai9962, sss9772, fx2078}@nyu.edu

Abstract

This project aims to implement and evaluate the Forward-
Forward (FF) algorithm proposed by G. Hinton (Hinton
2022), a novel learning procedure for neural networks. The
FF algorithm replaces the forward and backward passes of
backpropagation with two forward passes using positive and
negative data, offering potential simplification in learning
and video processing without the need for activity storage or
derivative propagation. The focus of this project is on the sim-
ple feed-forward supervised method of the FF algorithm, im-
plemented using PyTorch. The primary objective is to achieve
error rates similar to the original paper (around 1.36% af-
ter 60 epochs for regular MNIST images) and compare its
performance with backpropagation-based models of similar
size across varying epochs and training times. Additionally,
we will explore various implementations of the FF algorithm
on the MNIST dataset, including different architectures with
varying numbers of layers and learning rates. It is impor-
tant to note that due to the limited availability of previous
works and resources on the FF algorithm, this project aims
to fully understand the algorithm’s inner workings and pro-
vide a robust implementation with additional functionalities.
To achieve this, we will present various architectures for the
MNIST dataset as benchmarks for the project and also ex-
plore the application of the FF algorithm on the CIFAR-10
dataset.
The primary objective of this project is to assess the effective-
ness of the FF algorithm as a viable alternative to backprop-
agation for training neural networks. By conducting a com-
prehensive evaluation and comparison with backpropagation
on the MNIST dataset, this research aims to provide valuable
insights into the performance and potential advantages of the
FF algorithm. The code for this paper’s implementation can
be found in this repository https://github.com/shashvatshah9/
FFPytorch

Introduction
The paper by G.Hinton (Hinton 2022) presents a new
learning procedure for neural networks called the Forward-
Forward (FF) algorithm. Although backpropagation is
nearly ubiquitous in modern machine learning and deep
learning models, there is little evidence that the brain learns
in such a manner (Y. Song and Bogacz 2020). In an attempt

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to more closely mimic biological brain function, the FF al-
gorithm replaces the forward and backward passes of back-
propagation with two forward passes, one with positive data
and the other with negative data. The algorithm has shown
promising results on small problems and has the potential to
simplify learning and enable video processing without stor-
ing activities or stopping to propagate derivatives.

In their initial research, Hinton uses three main overarch-
ing methods to evaluate the FF algorithm with the MNIST
dataset - a simple feed-forward unsupervised method, a sim-
ple feed-forward supervised method, and a multi-layer re-
current neural network. In all methods they use a model
with roughly four hidden layers each containing 2000 Re-
LUs, with slight variations to test the impact of different
learning techniques. In the unsupervised method, they test
with both fully connected layers and local receptive fields.
In the supervised method, they test with different forms of
classification - either feeding the network a ”neutral label”
composed of ten equal entries of 0.1 to represent the ten dig-
its, or feeding the network each of the ten labels in separate
runs and choosing the label with the best accumulated good-
ness. In the multi-layer recurrent method, the activity at any
given layer is determined by the activity of the layers on ei-
ther side.

In this project, we discuss the from-scratch implementa-
tion of the supervised version of this algorithm in PyTorch
and perform a comparison with vanilla backpropagation by
evaluating their performance on the MNIST dataset.

Implementation
The Forward Forward Algorithm
The Forward-Forward algorithm is a learning approach that
draws inspiration from Boltzmann machines and Noise Con-
trastive Estimation. It introduces a unique twist to the tradi-
tional backpropagation method by employing two forward
passes with opposing goals. In this algorithm, the positive
pass adjusts the weights to enhance the goodness in each
hidden layer, while the negative pass adjusts the weights to
decrease the goodness. The goodness is evaluated using var-
ious metrics, such as the sum of squared neural activities
or the negative sum of squared activities. The ultimate ob-
jective of the learning process is to accurately classify in-
put vectors as positive or negative data. This classification

https://github.com/shashvatshah9/FFPytorch
https://github.com/shashvatshah9/FFPytorch


is achieved by applying a logistic function to the goodness.
The algorithm aims to ensure that the goodness surpasses a
predetermined threshold for real data and falls significantly
below that threshold for negative data. The negative data can
be either predicted by the neural network through top-down
connections or supplied externally.

p(positive) = σ

∑
j

y2j − θ

 (1)

The FF algorithm implementation on the MNIST dataset in-
volves a key aspect: generating negative data. In the origi-
nal paper by Hinton, a method is hardcoded to combine two
real images with two randomly generated noisy images. This
combination ensures that the resulting ”output” inherits fea-
tures from both sources, effectively creating negative data
that is related to real data. The paper argues that working
with this negative data, aiming to make it more confusing,
can enhance the learning capability of the neural network
when using the FF algorithm. Furthermore, one might be
interested in knowing how the model learns via the FF al-
gorithm. Let’s consider a supervised situation, which is the
one we will be setting up the implementation later on. We
get the input data, in our case MNIST images, and we make
sure that the positive data includes labels, and for negative
data, we use incorrect labels. At this point, what we want
the network to do, is for it to be able to learn the difference
between images with the correct label, and the ones with
the wrong label. For more details on the way the network
learns, one can refer to the Top-down Effect section in (Hin-
ton 2022). Note that the situation is a bit more complicated
when dealing with CIFAR-10, as this data set contains three
color channels that must be stacked into one.

Overview
Our implementation focuses on the simple feed-forward su-
pervised method of the FF algorithm, built using PyTorch
and tested on the MNIST dataset. We have built a small,
generic neural network with fully connected layers contain-
ing Gaussian Error Linear Unit (GELU) activations. The lay-
ers can be dynamically generated upon model initialization
by passing input and output dimensions to the model in-
stance. For the purposes of this project, we used models of
varying layer sizes from 300 to 2000, to compare with mod-
els of similar sizes using backpropagation.

Similar to the original implementation of the FF super-
vised network by Hinton, we use MNIST data with a one-
hot encoding embedded in each image. Using the first ten
pixels, we can assign a label by zeroing out every pixel ex-
cept the labeled pixel in a serial manner - i.e. the first pixel
represents the label for class 1, the second pixel for class 2,
etc. We can then generate positive and negative data by em-
bedding a label that is either true to the image classification
or false.

On top of the original implementation, we also trained
the model on the CIFAR10 dataset. The additional challenge
solved here is that the CIFAR10 dataset contains 3 chan-
nel images, instead of the grayscale images of the MNIST

dataset. And to handle this additional dimensionality in data,
we encoded the label values to all three channels of the im-
age, and then stack them horizontally. After that, we just use
the image, a 1-dimensional tensor and generate the positive
and negative data just as mentioned for the MNIST dataset
implementation.

The original paper by (Hinton 2022) doesn’t mention ex-
plicitly the loss function that they have used for their experi-
ments, yet in (Ororbia and Mali 2023) the loss function used
for the experiments they run on MNIST with an adaptation
of FF, called ’Predictive Forward Forward’, is defined as :

1

2
(
1

N

N∑
n

log(1+egpos+θ)+
1

N

N∑
n

log(1+egneg−θ)) (2)

Where gpos is the output from all neurons in a layer with
positive data, gneg is the output from all neurons in a layer
with negative data, θ is a predetermined threshold that the
positive and negative data is pushed away from, and N is
the number of neurons in each layer.

Technical Details
During initial testing, our implementation consisted of two
layers with dimensions 784→ 500→ 500, and trained each
layer on all MNIST training images at once. Because we
loaded the entire model and all training data onto cuda, the
training time was very fast, completing roughly 100 epochs
in 35 seconds. However, this method did not mimic the train-
ing of normal backpropagation methods - instead of run-
ning training data through the entire model in each epoch,
it trained each layer for 100 epochs, then moved on to the
next layer to repeat the process. It also did not allow for
data batching, as the entire dataset was used for training in
one very large batch. In an effort to more closely match the
methods used in backpropagation, we restructured the code
to accept multiple batches and train the entire model batch
by batch before completing one epoch.

One unique aspect of the FF algorithm is the ability to
train each layer individually. Because the FF algorithm uses
the output goodness of each layer to update the weights of
that layer only, we are able to run the entire set of train-
ing data through one layer at a time, either in batches or
one large set. This allows for some unconventional training
techniques - namely, we can load one layer of the network
at a time onto cuda, significantly reducing the GPU RAM
footprint. By combining this with batching, we were able to
reduce GPU memory usage from 13.1 GB to only 2.0 GB
during training. This also accommodates larger networks on
hardware with less memory, with the obvious trade-off of
training speed, as loading data on and off of cuda has a sig-
nificant time cost.

Training in this manner requires a few code changes that
deviate from regular backpropagation methods using Py-
Torch. First, the training data tensors must be ”detached”
from their computational graphs after each layer to prevent
backpropagation to previous layers. We accomplish this by
calling ’x.detach()’, where x is the training data, after each
layer is trained. In doing so, calling ’loss.backward()’ does



not perform true backpropagation because it is only updating
the weights of the previous layer.

Another advantage of the FF method is that the output
layer does not have to match the number of possible classi-
fications, but can instead have any size. This difference can
be seen in Figures 1 and 2, where the first displays a simple,
downsized representation of the FF network with a large out-
put layer, and the second displays a simple, downsized repre-
sentation of a similar network using backpropagations with
an output layer of size 3 for 3 classes. Following the exam-
ple of MNIST data, we can use the model to determine the
likelihood that an image belongs to one of the ten classes by
running the input image through the network ten times, each
time with a different classification encoded in the image us-
ing the previously described encoding method. For each la-
bel, we accumulate the average goodness over every layer,
and choose the label with the highest accumulated goodness.
However, this requires ten passes through the network for in-
ference on every input image, which significantly slows the
evaluation throughput.

To reproduce similar error or accuracy for CIFAR-10
dataset, we first reused the architecture similar to the train-
ing architecture proposed by (Hinton 2022). The model
consisted of 2 layers with dimensions 3072→ 500→ 500.
The model didn’t converge to the expected accuracy levels.
So then we used another model with dimensions 3072→
1000→ 1000,→ 500. This model again converged to a mod-
est error value of 0.55 on the test dataset. The train and test
error for this model have been plotted in Figure 8.

Figure 1: Simple, downsized representation of FF network

Figure 2: Simple, downsized representation of a similar net-
work using backpropagation

Results
Our approach to testing the FF network involved changing
the overall training method, network structure, hyperparam-
eters, and batch size. We first tried two different training
methods - one method that trains the entire dataset on each
layer, one layer at a time, and another method that splits
the dataset into batches and trains all layers on one batch
before moving on to the next batch, which more closely
matches typical training techniques with backpropagation
models. We found that the first method ran much faster, but
produced worse results with an error rate around 6.8% after
100 epochs, while the second method achieved an error rate
around 3.49% after 100 epochs.

We then used the second method, which we will call
”batched training”, on three different network architectures
with the following layer dimensions: architecture 1 - [784,
500, 500], architecture 2 - [784, 300, 300, 300], and archi-
tecture 3 - [784, 2000, 2000, 2000, 2000]. The errors for
these architectures over ten epochs using a learning rate of
0.03 and batch size of 50 can be seen in Figure 3 below.
We can see that architecture 1, the shortest of the three, per-
formed the best. Architecture 3, the largest, performed the
worst, with the test error exploding to 90%, far off the scale
of the figure below. Using architecture 3 with a learning rate
of 0.01 improved the results significantly, however after 40
epochs the error again exploded to 90%. We aren’t entirely
sure what causes this sudden change, but we theorize that is
may be due to the gradient over shooting the local minimum.

Figure 3: Test errors for architectures 1, 2, and 3, with layer
sizes [784, 500, 500], [784, 300, 300, 300], and [784, 2000,
2000, 2000, 2000] respectively

We decided to continue testing with architecture 1, which
has 643,000 trainable parameters, comparing the model per-
formance on different batch sizes. With a batch size of 50,
we reach an error rate of 3.35% after 50 epochs, as seen in
Figure 4. After around 40 epochs, the test error levels out
while the training error continues to decrease, which may
lead to over-fitting. With a batch size of 10, we reach an er-
ror rate of 3.38%, after 50 epochs, as seen in 5. Though after
around 40 epochs the model starts over-fitting.

After testing different variations of the FF network, we
tested a similar simple neural network with backpropaga-
tion. We used two different layer sizes: one with sizes [782,
500, 10], and another with sizes [784, 2000, 2000, 2000,
2000, 10]. Both networks performed significantly better than



Figure 4: Test error over epochs of the FF network with
batch size 50

Figure 5: Test error over epochs of the FF network with
batch size 50

the FF network after only 20 epochs, as seen in Figure 6 and
Figure 7. The smaller network reaches a test error around
2.23% and the larger network reaches a test error around
1.88%.

Figure 6: Test error over epochs of the backpropagation
model with batch size 50, layer sizes [782, 500, 10]

In the end, we are also showing the error convergence for
the CIFAR10 model in Figure 8, where the model architec-
ture was not so competent, but the model did show learning
capability just like a normal image classification model.

Conclusion
After conducting multiple experiments involving various
model architectures and fine-tuning hyperparameters, our
findings demonstrate that fully connected layers have the ca-
pability to approximate complex tasks, such as image classi-
fication, which conventionally rely on Convolutional Neural
Networks (CNNs). However, as the dimensionality of the

Figure 7: Test error over epochs of the backpropagation
model with batch size 50, layer sizes [784, 2000, 2000, 2000,
2000, 10]

Figure 8: Error over epochs for CIFAR10 dataset

data increases, there is a need for more efficient data en-
coding techniques within the fully connected network. Cur-
rently, we employ a simplistic approach of encoding the la-
bels as one-hot values, which proves to be impractical for
larger datasets like Imagenet (ima 2009). It is also clear that
backpropagation on networks of similar sizes is consider-
ably more efficient, producing lower error rates in fewer
epochs.

Moreover, we observed that increasing the number of lay-
ers in the network did not yield improvements in the classifi-
cation results. This observation suggests that shallow models
perform on par with deep CNNs. In fact, introducing addi-
tional layers to the fully connected architecture led to simi-
lar challenges as encountered in deep CNNs, such as the is-
sue of vanishing gradients. Consequently, the advancements
made in scaling the Forward Forward network for deep net-
works can be repurposed to enhance the Forward Forward
architecture, making it more applicable to refined and ex-
pansive datasets.

References
2009. ImageNet: A large-scale hierarchical image database.
Hinton, G. 2022. The forward-forward algorithm: Some pre-
liminary investigations. arXiv preprint arXiv:2212.13345.
Ororbia, A.; and Mali, A. 2023. The Predictive Forward-
Forward Algorithm. arXiv preprint arXiv:2301.01452.
Y. Song, Z. X., T. Lukasiewicz; and Bogacz, R. 2020. Can
the Brain Do Backpropagation? —Exact Implementation of
Backpropagation in Predictive Coding Networks. Advances
in neural information processing systems.


